

informatics.sydney.edu.au sih.info@sydney.edu.au

Sydney Informatics Hub The Sydney Informatics Hub provides support, training, and advice on research data, analyses and computing. Talk to us about your computing infrastructure, digital tools and data governance needs. You can also collaborate on grants and projects with our Data Science experts.

# **Introduction to DNA-Sequencing**

Part 1: DNA/RNA Sequencing Course, Westmead

### **Course Overview**

Introduction to DNA sequencing Group activity: Reference mapping Genome assembly pipeline Hands-on activity: Reference mapping on Galaxy

# Part B: Group activity – The DNA detectives in a jam

Farmer McSweetie has a problem. He grows the world's sweetest strawberries but something has gone badly wrong. His latest crop taste terrible and no-one will buy them.

#### What could have happened?

He has had his strawberries tested and discovered that they don't have enough of the right sort of sugar to make them sweet. An enzyme called Acid Invertase converts normal sugar (sucrose) to extra sweet fruit sugar (fructose) but it doesn't seem to be working properly and he doesn't know why.

It's time to call in the DNA detectives (that is you, by the way) to try to unravel the mystery of what is wrong with McSweetie's strawberries.

First, we will get the DNA sequence from the mutant strawberries. (A mutation is just a change in the DNA sequence compared to normal). Unfortunately, we can't read all of it at once so we have to read lots of smaller fragments and put them together so they overlap and we can get the whole sequence. A picture of some students doing this is shown below.



See how each bit of DNA sequence overlaps with the next one so we can read the whole thing.

When we have built our sequence we can compare it to what it should be. We will use a program to search through all the known DNA sequences for strawberry. We need to be very careful as we copy the A's, C's, G's and T's as just one letter out of place could spell disaster.

When you have got your DNA sequence assembled to make a long molecule (called a contig), carefully read off the DNA letters in order.

Here is the sequence for a juicy strawberry. Find the base in your sequence that is different and circle it. Write the letter you find underneath.

TATCATTTCCAGCCTTGCAAGAATTGGATGAACGATC

CTAATGGGCCAATGGTTTACAAGAACGTATACCATCA

# TTTTTATCAATATAATCCCGATGGT

Let's learn more about this DNA sequence.

In a web browser go to:

### Web BLAST



# **Basic Local Alignment Search Tool**

**BLAST** finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE\_TYPE=BlastSear ch&LINK\_LOC=blasthome

Copy your sequence (the above sweet strawberry DNA sequence, modified with the variant you identified) and paste it into the 'Enter Query Sequence' box:





Then press

A comparison with DNA sequences in the NCBI BLAST database your sequence is similar to:

| Color key for alignment scores |      |                |            |       |       |       |    |    |  |  |
|--------------------------------|------|----------------|------------|-------|-------|-------|----|----|--|--|
| <40                            | 0-50 | 5              | 0-80       | 8     | 0-200 | >=200 |    |    |  |  |
|                                |      |                |            | Query |       |       |    |    |  |  |
| 1 10                           | 20   | <b>1</b><br>30 | <b>4</b> 0 | 50    | 60    | 70    | 80 | 90 |  |  |
|                                |      |                |            |       |       |       |    |    |  |  |
|                                |      |                |            |       |       |       |    |    |  |  |

If you scroll down to the top prediction, click on 'Graphics' to see the alignment.

| Down             | load     | <u>GenBank</u> Graphics                                                                                                     |
|------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|
| PREDI            | ICTEE    | D: Fragaria vesca subsp. vesca fructan 6-exohydrolase-like (LOC101307779), transcript variant X1, mRNA                      |
| Sequen           | ce ID: 2 | KM_004297513.2 Length: 2550 Number of Matches: 1                                                                            |
| Range 1          | L: 719   | to 817 GenBank Graphics Vext Match A Previous Match                                                                         |
| Score<br>178 bit | ts(96)   | Expect         Structure           2e-41         Show alignment to XM_004297513 in Nucleotide Graphics for 719 to 817 range |
| Query            | 1        | TATCATTTCCAGCCTTGCAAGAATTGGATGAACCATCCTAATGGGCCAATGGTTTACAAG 60                                                             |
| Sbjct            | 719      | TATCATTTCCAGCCTTGCAAGAATTGGATGAACGATCCTAATGGGCCAATGGTTTACAAG 778                                                            |
| Query            | 61       | AACGTATACCATCATTTTTATCAATATAATCCCGATGGT 99                                                                                  |
| Sbjct            | 779      | AACGTATACCATCATTTTATCAATATAATCCCGATGGT 817                                                                                  |
|                  |          |                                                                                                                             |

aka wild strawberry!

PREDICTED: Fragaria vesca subsp. vesca fructan 6-exohydrolase-like (LOC101307779), transcript variant X1, mRNA

NCBI Reference Sequence: XM\_004297513.2 GenBank FASTA

/

|         |            |         |        |               |              |                      |       |                             |               |              |        |            |       |       |          |       |       |       |         |     |           |       | Link 1   | To This | s View     | Feedba | ick   |
|---------|------------|---------|--------|---------------|--------------|----------------------|-------|-----------------------------|---------------|--------------|--------|------------|-------|-------|----------|-------|-------|-------|---------|-----|-----------|-------|----------|---------|------------|--------|-------|
|         |            |         |        |               |              |                      | _     |                             |               |              |        |            |       |       |          |       |       |       |         |     |           |       |          |         |            |        |       |
| ļ       | 200        | 300     | 400    | 500           | 600          | _ 7 <mark>≦</mark> ⊅ | 200   | 900                         | <u> 1K</u>    | 1,100        | 1,20   | <u>1,3</u> | 1,4   | 100   | 1,500    | 1,600 | 1,70  | 1,80  | 1,90    | 0 2 | <u>к.</u> | 2,100 | 2,       | 200     | 2,300      | ļ      | 2,550 |
|         |            | · · ·   |        |               | >            |                      |       |                             |               | - <b>- -</b> |        |            | 1     |       |          | -     |       |       |         |     |           |       |          |         |            |        | -     |
| 🖢 😪 x   | M_0042975  | 513.2 - | Find:  |               |              |                      | ~     | $\langle \neg \neg \rangle$ | 0             |              | -      | - 0        | . 🕕   | •     |          |       |       |       |         |     | - 2       | 👌 Тоо | ls •     | ÷ 1     | Track      | is     | ? •   |
|         | 720        | 7       | 30     |               | 740          |                      | 75    | 0                           |               | 760          |        | 7          | 70    |       | 78       | 0     |       | 790   |         |     | 800       |       |          | 81      | a          |        | 826   |
| Sequen  | ce         |         |        |               |              |                      |       |                             |               |              |        |            |       |       |          |       |       |       |         |     |           |       |          |         |            |        | ×     |
| тосст   | ATCATT     | TCCAGO  | CTT    | GCAAG         | <b>JAATT</b> | GGAT                 | GAAC  | GATC                        | CTAA          | TGGG         | CCAA   | TGG        | TTA   | CAAG  | GAAC     | GTA   | TACC  | ATCA  | TTTT    | TAT | CAA       | TAT   | AAT      | ccc     | GATO       | GTGT   | AGO   |
| ACCCA   | TAGTAA     | AGGTCO  | GGAA   | CGTTC         | TTAA         | CCTA                 | CTTG  | CTAG                        | GATT          | ACCC         | GGTT   | ACC        | AAT   | GTTO  | TTG      | CAT   | ATGG  | TAGT  | A A A A | ATA | GTT       | ATA   | TTA      | GGG     | CTAC       | CAC    | Т     |
| Genes   |            |         |        |               |              |                      |       |                             |               |              | 14     | -          |       |       |          |       |       |       |         |     |           |       |          |         |            |        | ×     |
|         |            |         |        |               |              |                      | _     |                             |               |              |        | VD 00/     | 20750 |       | _        |       |       |       |         |     |           |       |          |         |            |        |       |
| т ада т | өт сөт тү  | TC CAG  | ССТ Т  | GC AAG<br>C K | AAT 1        | гаа Ато<br>И М       | G AAC | GAT C                       | CT AA'<br>P N | r GGG        | CCA P  | TG G       | т төс | C AAG | AAC<br>N | GTA   | төс о | AT CA | T TTT   | төт | CAA       | төт   | AAT<br>N | ငင္ရင   | GAT (<br>D | GET GT | A G   |
| BLAST 1 | Results :  | for: Nu | cleot  | tide S        | equen        | ce (9                | 9 let | ters)                       |               |              | 14     | Þ          |       |       |          |       |       |       |         |     |           |       |          |         |            |        | ж     |
|         |            |         |        |               |              |                      |       |                             |               |              | Query. | 88707      |       |       |          |       |       |       |         |     |           |       |          |         |            |        |       |
| -       | 720        | 7       | 30     |               | 740          |                      | 75    | 0                           |               | 760          |        | 7          | 70    |       | 78       | 0     |       | 790   |         |     | 800       |       |          | 81      | а          |        | 826   |
| XM_00   | 4297513.2: | 715821  | (107bp | )             |              |                      |       |                             |               |              |        |            |       |       |          |       |       |       |         |     |           |       | Z        | ٥       | Tracks s   | shown: | 3/6   |

Gigsaw activity, (Martin. EMBnet.journal, v18, n1, 2012).

### Part C: A genome assembly pipeline in Galaxy

#### Case study

# Whole-genome sequencing for analysis of an outbreak of meticillin-resistant *Staphylococcus aureus*: a descriptive study

Simon R Harris\*, Edward J P Cartwright\*, M Estée Török, Matthew T G Holden, Nicholas M Brown, Arnanda L Ogilvy-Stuart, Matthew J Ellington, Michael A Quail, Stephen D Bentley, Julian Parkhill†, Sharon J Peacock†

#### Summary

Background The emergence of meticillin-resistant *Staphylococcus aureus* (MRSA) that can persist in the community and replace existing hospital-adapted lineages of MRSA means that it is necessary to understand transmission dynamics in terms of hospitals and the community as one entity. We assessed the use of whole-genome sequencing to enhance detection of MRSA transmission between these settings.

Methods We studied a putative MRSA outbreak on a special care baby unit (SCBU) at a National Health Service Foundation Trust in Cambridge, UK. We used whole-genome sequencing to validate and expand findings from an infection-control team who assessed the outbreak through conventional analysis of epidemiological data and antibiogram profiles. We sequenced isolates from all colonised patients in the SCBU, and sequenced MRSA isolates from patients in the hospital or community with the same antibiotic susceptibility profile as the outbreak strain.

Findings The hospital infection-control team identified 12 infants colonised with MRSA in a 6 month period in 2011, who were suspected of being linked, but a persistent outbreak could not be confirmed with conventional methods. With whole-genome sequencing, we identified 26 related cases of MRSA carriage, and showed transmission occurred within the SCBU, between mothers on a postnatal ward, and in the community. The outbreak MRSA type was a new sequence type (ST) 2371, which is closely related to ST22, but contains genes encoding Panton-Valentine leucocidin. Whole-genome sequencing data were used to propose and confirm that MRSA carriage by a staff member had allowed the outbreak to persist during periods without known infection on the SCBU and after a deep clean.

Interpretation Whole-genome sequencing holds great promise for rapid, accurate, and comprehensive identification of bacterial transmission pathways in hospital and community settings, with concomitant reductions in infections, morbidity, and costs.

#### Lancet Infectious Diseases, 2013, 13(2):130-136 https://dx.doi.org/10.1016/S1473-3099(12)70268-2



## Background

A potential outbreak of MRSA in the Special Care Babies Unit (SCBU) was indicated by three babies having similar antibiotic susceptibility profiles and who were admitted within days of each other.



Figure 1. (A) Antibiogram and (B) epidemiology of three possible outbreak cases in the SCBU.

Infection control responded to the outbreak by performing a deep clean, implemented weekly MRSA screening, and reinforced infection control. 13 (+3) babies with MRSA were identified within 6 months prior to the 3 outbreak cases. 1 case was identified after the deep clean of the SCBU. Infection control investigated 17 cases: 12 cases were classified as part of the outbreak and 5 cases were classified as unrelated to the outbreak.





### Whole Genome Sequencing

Did the outbreak extend over 6 months? How accurate was the infection control investigation? Reference mapping



(approach used by Harris et al.)

**Figure 3. (A)** Creating a draft genome by reference mapping vs de novo assembly. **(B)** A missing plasmid found in samples when compared to the reference. **(C)** Phylogenetic tree based on core single nucleotide polymorphisms (SNPs), including P1 and P3 who infection control had initially excluded from the outbreak based on their antibiogram.

# **Pipelines**



### Genome assembly and annotation

### Pangenome-based phylogeny



7. Make phylogenetic tree

These workflows can be found here: <a href="https://galaxy-mel.genome.edu.au/galaxy/workflow/list\_published">https://galaxy-mel.genome.edu.au/galaxy/workflow/list\_published</a>

### Results

This is the phylogenetic tree produced by the pipeline and viewed in *Phandango* (Hadfield, et al. Bioinfomatics, 2017).

https://jameshadfield.github.io/phandango

Here we are focusing on the ermC gene (rRNA adenine N-6-methyltransferase, confers Erythromycin resistance).



Notice that 3 samples, P1, P5, and P24 have the ermC gene. However, the paper reports that P24 was susceptible to Erythromycin and was missing the plasmid carrying ermC.



Table S1. Antimicrobial susceptibility pattern of MRSA isolates.

Red means resistant and white means susceptible to a given antibiotic. Green, initial result proved incorrect on repeat testing and changed designation from susceptible to resistant. A healthcare worker had twenty MRSA colonies taken from the primary plate; the blue box for erythromycin signifies that some colonies were susceptible to this antibiotic (n=18) and some were resistant (n=2).

Let's explore this.

### Part C. Reference mapping in Galaxy

### Galaxy

This part will be based on a web-based platform called **Galaxy**. It is a useful tool for biologists to perform analysis workflows and contains a lot of common bioinformatics tools. Registered users can use 100Gb of space for free.

We will use Galaxy (Melbourne instance) for aligning reads to the plasmid carrying the ermC gene (<u>CP002148</u>).

- Go to the Melbourne Galaxy Server (in Firefox, Chrome or Safari): <u>http://galaxy-mel.genome.edu.au/galaxy</u>
- If you haven't already, register (click User > Register), then log in



### Part C1. Import your data

1. Open the public histories: https://galaxy-mel.genome.edu.au/galaxy/history/list\_published

2. Click on SIH\_DNASeq\_Mapping

# **Published Histories**

| search name, annotation, owner, and tags | Q                       |
|------------------------------------------|-------------------------|
| Advanced Search                          |                         |
| Name                                     | Annotation <u>Owner</u> |
|                                          |                         |

3. Import the dataset into your 'history'

| ╤Galaxy / GVL 4.0.0                                     | Workflow | Shared Data – |  | <b>=</b> |                                            |                           |
|---------------------------------------------------------|----------|---------------|--|----------|--------------------------------------------|---------------------------|
| Published Histories   sih.training   SIH_DNASeq_Mapping |          |               |  |          | Import history                             | About                     |
| SIH_DNASeq_Mapping                                      |          |               |  |          | Make a copy of this histor<br>switch to it | ry and<br>Autho           |
| 1.02 GB                                                 |          |               |  |          |                                            | sih.trai                  |
| search datasets                                         |          |               |  |          | 8                                          | Relate                    |
| Dataset                                                 |          |               |  |          | Annotation                                 | <u>All pub</u><br>Publish |
| 8: P24 reads mapped to plasmid-BAM                      | ۲        |               |  |          |                                            | Ratin                     |
| 7: P1 reads mapped to plasmid-BAM                       | ۲        |               |  |          |                                            | Commu<br>(0 rating        |
| 6: Plasmid-CP002148-1.gbk                               | ۲        |               |  |          |                                            | Yours                     |
|                                                         |          |               |  |          |                                            | Taas                      |

#### Importing history "SIH\_DNASeq\_Mapping"

| Enter a title for the new history: |               |
|------------------------------------|---------------|
| imported: SIH_DNASeq_Mapping       |               |
|                                    |               |
|                                    |               |
|                                    | Cancel Import |
|                                    |               |



Part C2. Perform the reference mapping task

1. In the left 'Tools' pane, type in 'BWA-MEM', and click on 'Map with BWA-MEM'.



2. Select 'Use a genome from history and build index', then select 'Plasmid-CP002148-1.fasta

| Map with BWA-MEM - map medium and long reads (> 100 bp) against reference genome (Galaxy Version 0.7.15.1)                            | 🛞 Versions | ▼ Options |
|---------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| Will you select a reference genome from your history or use a built-in index?                                                         |            |           |
| Use a genome from history and build index                                                                                             |            | •         |
| Built-ins were indexed using default options. See `Indexes` section of help below Use the following dataset as the reference sequence |            |           |
| C     C     S: Plasmid-CP002148-1.fasta                                                                                               |            | •         |

3. Select 'Paired-Ends'

4. For forward read selection, click the multiple datasets button and using (ctrl on Windows, command on Mac) select both P1\_1.fastq and P24\_1.fastq.

| Single or Paired-en  | d reads                                                                                         |
|----------------------|-------------------------------------------------------------------------------------------------|
| Paired               | ▼                                                                                               |
| Select between paire | d and single end data                                                                           |
| Select first set of  | reads                                                                                           |
|                      | 4: P24_2.fastq                                                                                  |
|                      | 3: P24_1.fastq                                                                                  |
| Multiple datasets    | 2: P1_2.fastq                                                                                   |
|                      | 1: P1_1.fastq                                                                                   |
|                      | 🚠 This is a batch mode input field. Separate jobs will be triggered for each dataset selection. |
| Specify dataset wit  | h forward reads                                                                                 |
|                      |                                                                                                 |
|                      |                                                                                                 |

5. For reverse read selection, click the multiple datasets button and select both P1\_2.fastq and P24\_2.fastq.

| Select second   | set of reads                                                                                                          |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|
|                 | 4: P24_2.fastq<br>3: P24_1.fastq                                                                                      |
| Multiple datase | 2: P1_2.fastq           1: P1_1.fastq                                                                                 |
| Specify datase  | This is a batch mode input field. Separate jobs will be triggered for each dataset selection.<br>t with reverse reads |
| 6. Click        | Execute: Map with BWA-MEM<br>(0.7.15.1)                                                                               |

10. The mapping jobs will be submitted to the Galaxy cluster for processing – **Be Patient!** – a key lesson in Genomics.



Part C3. Visualise the results the Integrated Genomics Viewer (IGV)



3. Click on '9 Map with BWA-MEM on data 2, data 1, and data 5 (mapped reads in BAM format)'



4. Click on "web\_current" next to "display with IGV". Save the 'igv.jnlp' file and double click the file to open it.

5. IGV will open, defaulting to the Human (hp19) genome. Go to Genome -> Load Genome from File.

| IGV 2.4 | File | Genomes  | View     | Tracks  | Regions | Tools | GenomeSpace |
|---------|------|----------|----------|---------|---------|-------|-------------|
|         |      | Load Ger | nome fro | om File |         |       | IGV         |
|         |      |          |          |         |         |       |             |

And select the Plasmid.gbk (genbank) file

|                      | Load Genome                |    |
|----------------------|----------------------------|----|
|                      | galaxy-mapping-exercise    | \$ |
| Name                 |                            | ^  |
| 🗖 Galaxy6-[Plasmid-C | P002148-1.gbk].gbk         |    |
| Galaxy6-[Plasmid-C   | P002148-1.gbk].genbank.fai |    |

6. In Galaxy, select 'display with IGV <u>local</u>' for both: <u>9 Map with BWA-MEM on data 2, data 1, and data 5 (mapped reads in BAM format)</u> And

10 Map with BWA-MEM on data 4, data 3, and data 5 (mapped reads in BAM format)



7. Navigate back to IGV, you will see the reads that mapped to this plasmid containing the Erythromycin gene. P1 has a lot of coverage, whereas P24 does not have enough coverage to support it containing this plasmid.



### Part C4. Further investigation

The assembly and annotation pipeline created a draft genome for P24 by denovo assembly. When looking for the ermC gene in the chromosome (as we did not find it on the plasmid), we see a transposase and IS protein around the ermC gene.

# Discussion: Did the ermC gene move from the plasmid to the chromosome through a transposase?

| Tran  | sposase/IS                     |                                          |              |                    |                        |         |
|-------|--------------------------------|------------------------------------------|--------------|--------------------|------------------------|---------|
| prote | ein 🔪                          |                                          |              |                    |                        |         |
| 🚍 P2  | 4 × new draft                  |                                          |              |                    |                        |         |
|       | 2 758 000 2 759 0              | 2,760,000                                | 2,761,000    | Sequence Setting   | <b>J</b> S             |         |
| draft | PROKKA 02581                   |                                          | <u> </u>     | Hide labels        |                        |         |
|       | dfrA aacA-a                    | .phD yncA_2 spxA                         | trpS         | Lock labels        |                        |         |
| draft | 2,762,000                      | 2,70                                     | 2765.000     | Sequence label     |                        |         |
|       |                                |                                          | PROKKA_02587 | Apposition by      | Annotation ty          |         |
|       | 4 2 766 000 2 767 000          | 2,268,000                                | 2 769 000    | Show annotatio     | Annotation ty          |         |
| draft |                                |                                          |              | Position           | Next to sequence 🔇     |         |
|       |                                | ОККА_02593                               | KA_02595     | Offset             | Little offset          |         |
|       | PROKKA_02588                   | 2 772,000                                | 2.773.000    | Label              | Stacked 🗘              |         |
| draft |                                |                                          |              | Show arrows        | Find                   | ormC in |
|       | PROKKA_02599                   |                                          |              | 🗹 Use gradients    |                        |         |
|       | PROKKA_02597<br>PROKKA_02596   | PROKKA_02602                             | PROKKA_02604 | Restriction sites  | Anŋ                    | otation |
|       |                                |                                          |              | Motifs             |                        |         |
| draft |                                |                                          |              | Nucleotide info    |                        |         |
|       |                                |                                          |              | Find               | -                      |         |
|       |                                |                                          |              | ermC               |                        |         |
|       | PROKKA_026071<br>PROKKA_026081 | OKKA_02612 PROKKA_02<br>OKKA_02611  PROK | KA_02614     | Sequence           |                        |         |
|       | PROKKA_02604                   |                                          | A_02615      | Advanced Annotatio | searcn parameters<br>n |         |
|       | 8,778,000                      | 2 280,000                                | 81,000       | Include            | translations           |         |
| draft |                                |                                          |              | O Position         |                        |         |
|       |                                | PROKKA_02618                             |              |                    | Find                   |         |
|       |                                | PROKKA_02620                             | PROKKA_02622 | Text format        |                        |         |
| ACA O | 🛱 🗉 🛲 🏟 📾 🖸 🕻                  | [} ⊕ <b>`</b> –                          |              | - 🗅 🗊 🛛 🕨          | Help Save View         |         |

# Thank you



Sydney Informatics Hub - Research Computing team bioinformatics, modelling, simulation

The Sydney Informatics Hub is a Core Research Facility. We provide support, training, and advice on research data, analyses and computing. We also collaborate on grants and projects. Talk to us about your computing infrastructure, digital tools and data governance needs. Contact <u>sih.info@sydney.edu.au</u> for more information.

https://informatics.sydney.edu.au





Sydney Informatics Hub